

Tabular Deposits: A Volume Comparison of Deterministic and Leapfrog Volumes

Aaron Tomsett March 2019

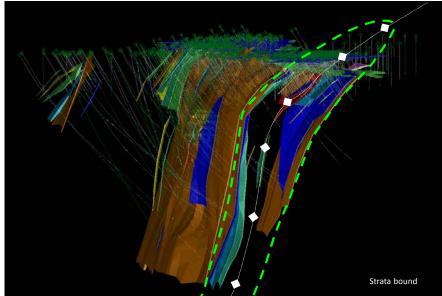
Volume Analysis: Introduction

Questions

- How can we evaluate the interpreted volumes of tabular orebodies built from traditional cross-sectional and implicit modelling methods?
- Should we be concerned with the risk associated with our interpretation?
- Should the interpretation risk be considered when reporting a MRE?

Objective

• To investigate a simple solution to critically interrogate the interpreted volumes of tabular orebodies


Volume Analysis: Background

The risk associated with the interpreted volumes of tabular orebodies increases as:

- The true width decreases with respect to the strike and down-dip dimensions (i.e. narrower orebodies have a greater risk)
- The variability and nugget effect of the economic variable increases
- The structural complexity increases (i.e. pre, syn and post)

Examples:

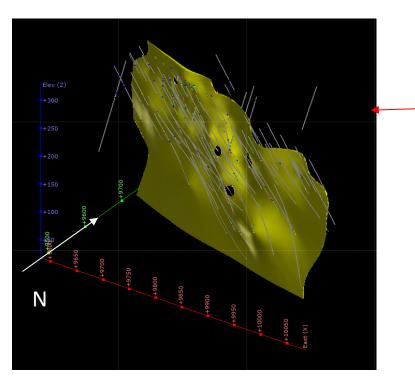
- Shear hosted
- Strata bound
- Massive nickel sulphides

Volume Analysis: Validation Approach

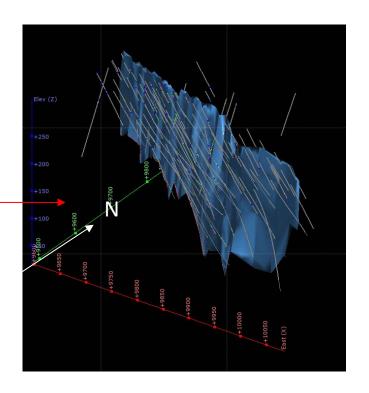
- Performed using the same approach used to validate variables such as gold, copper, etc
- On average the interpreted thickness should reproduce the sampled thickness:
 - Global comparison of interpreted volumes
 - Global comparison of interpreted thickness and the sampled thickness
 - Semi-local comparison or Swath Plot Analysis of the interpreted and sampled thickness

Shear hosted		

Volume Analysis: Validation Method

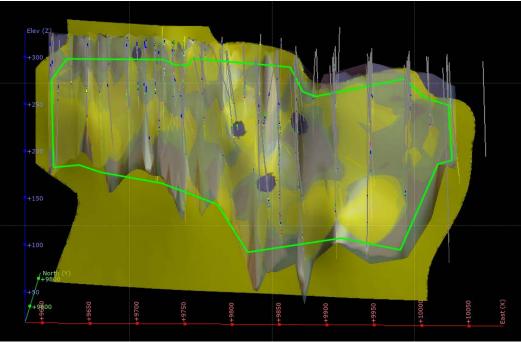

Methodology assumes that the interpreted volumes have been generated:

- 1. Determine the horizontal or vertical width of the drill hole intercepts (i.e. sampled thickness)
 - Trigonometry methods using the down hole intercept length, dip and dip direction of the drill hole and the dip and dip direction of the interpreted orebody
 - "New Distance" function within Leapfrog
- 2. Determine the width of the interpreted volumes at a nominal spacing (i.e. estimated thickness at 5m x 5m spaced long section intervals)
 - Block model manipulation
 - Draping point over the hanging and footwall surfaces
 - "New Distance" function within Leapfrog
- 3. Conduct the comparison between the estimated thickness and sampled thickness


Example 1: Narrow Lode Gold Deposit

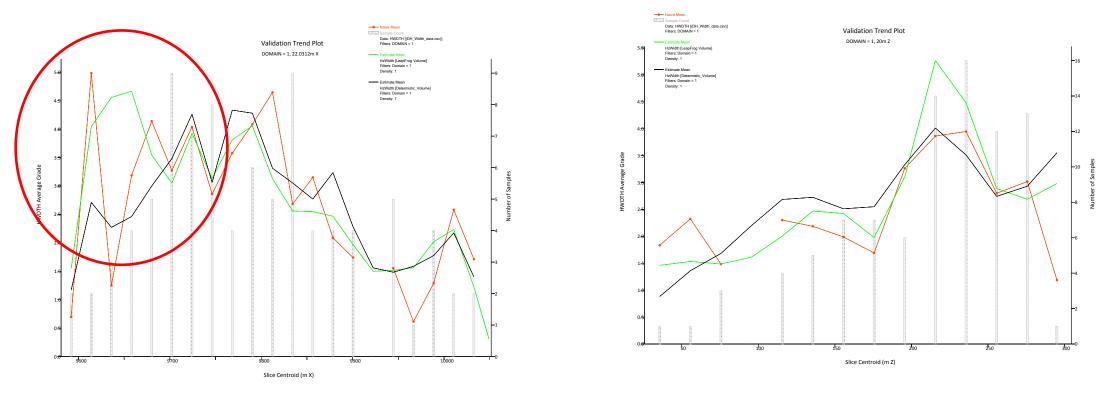
- Shear hosted gold deposit the higher grades are associated with quartz veining
- Drilling is based on RC and diamond drilling methods
- Sectional interpretation based on 25 m spaced sections and the interpretation supplied by the client
- Leapfrog shapes based on "vein modelling" tool and "pinch outs" were applied

Leapfrog Interpretation


Sectional Interpretation

Example 1: Narrow Lode Gold Deposit

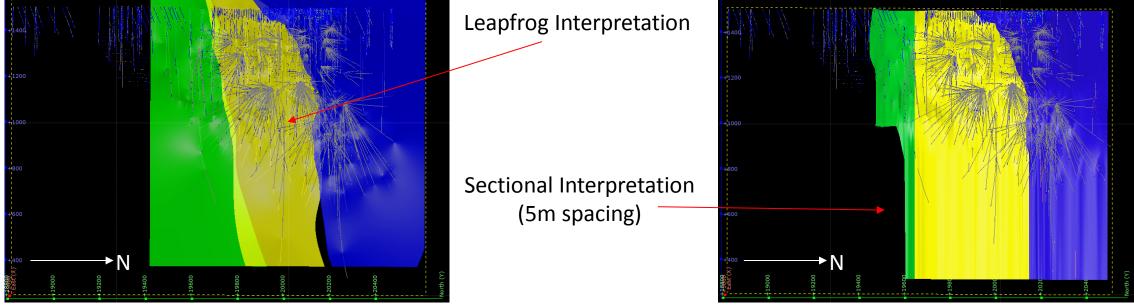
Global comparison conducted within the same long section area projection


- Interpretation Volume Comparison
 - Leapfrog 146,126m³
 - Sectional 143,703m³
 - 2% difference in volume
- Horizontal Width Global Comparison
 - Drill holes Average 2.95m
 - Leapfrog Average
 - Sectional Interpretation
- 3.21m (+9% diff)
- 3.10m (+5% diff)

Example 1: Swath Plot Comparison

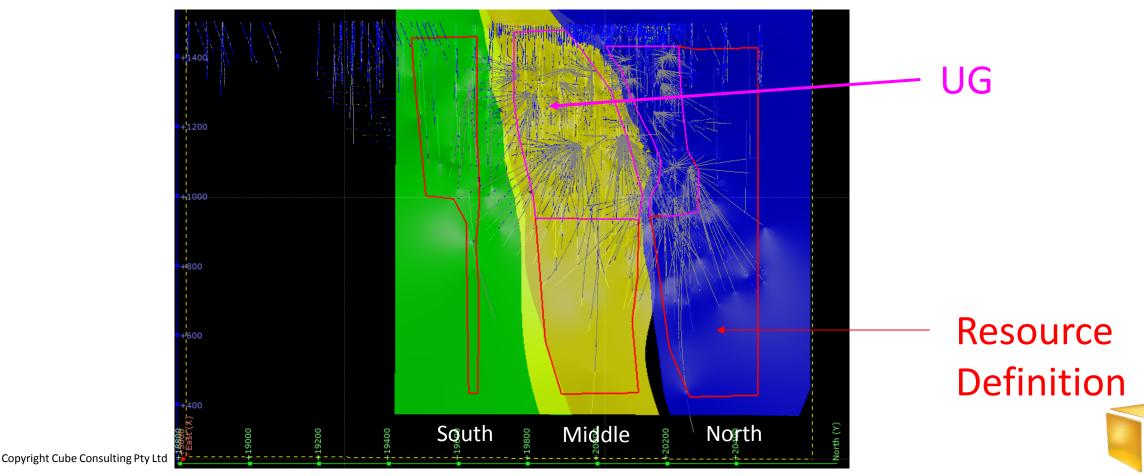
Leapfrog Interpreted Volumes – Green Sectional Interpreted Volumes – Black Sampled thickness - Red

Easting Swath


Elevation Swath

 Note the difference between the interpreted volumes in the poorly informed regions.

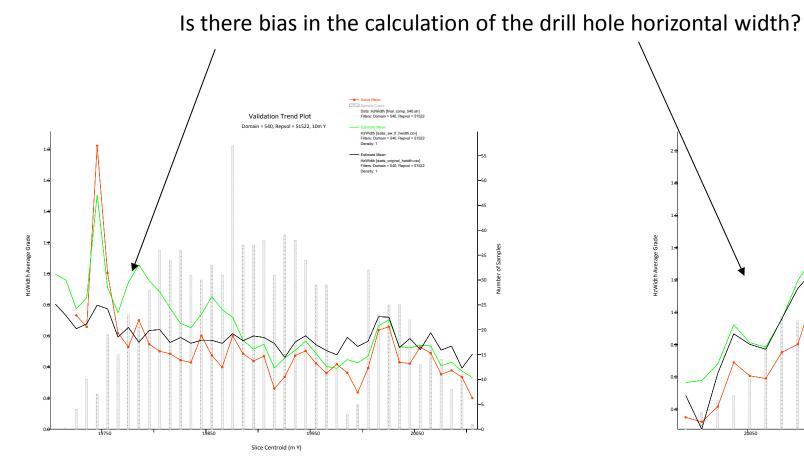
Example 2: Narrow Lode Gold Deposit


- Shear hosted deposit with quartz veining and higher grades associated with S-fabrics within the vein
- Interpretation based on diamond and underground grade control sampling
- Sectional interpretation based on 5 m spaced sections
- Leapfrog shapes created using the "vein modelling" function

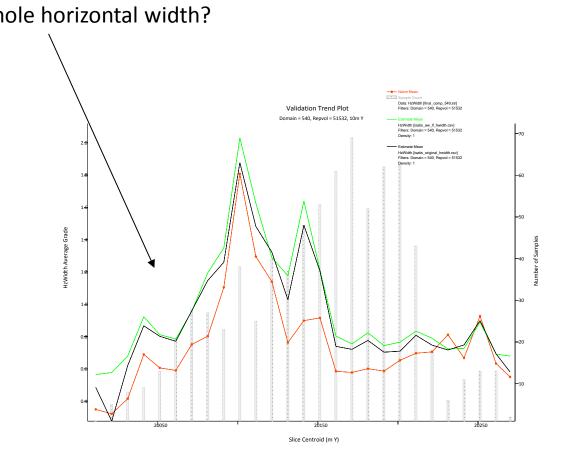
Example 2: Narrow Lode Gold Deposit

• Comparison conducted within like areas and further separated into grade control and resource definition regions

Example 2: Narrow Lode Gold Deposit


- Interpreted Volume Comparison
- Horizontal Width Global Comparison

Volume Comparison						
Domain	Location	Original WF	LF WF	% Diff		
South	Face	-	-	-		
South	Res Def	62,474	53,493	-14%		
Central	Face	73,857	70,662	-4%		
Central	Res Def	101,183	46,560	-54%		
North	Face	45,909	46,282	1%		
North	Res Def	118,793	197,600	66%		
	Total	402,216	414,597	3%		


Horizontal Width Comparison									
Domain	Area	DH Mean (m)	Original WF Mean (m)	% Diff	LF WF Mean (m)	% Diff			
South	-	-	-	-	-	-			
South	ResDef	0.571	0.771	35%	0.676	18%			
Central	Face	0.497	0.592	19%	0.7	41%			
Central	ResDef	0.368	0.846	130%	0.452	23%			
North	Face	0.795	1.029	29%	1.095	38%			
North	ResDef	0.64	0.556	-13%	1.133	77%			
	Total	0.765	0.866	13%	0.921	20%			

Example 2: Swath Plot Comparison UG Area

Central Area

Northern Area Leapfrog Interpreted Volumes – Green Sectional Interpreted Volumes – Black Sampled thickness - Red

Example 2: Swath Plot Comparison ResDef Area

LF: Extrapolation of lower thicknesses LF: Consistent LF: Extrapolation of higher thicknesses Sect: Consistent Sect: Optimistic Interpretation Sect: Consistent Validation Trend Plo Validation Trend Plot Validation Trend Plot main = 540 Renvol = 51513 Sm omain = 540 Renvol = 51523 10 main = 540 Renvol = 51533 10m Slice Centroid (m Y Slice Centroid (m Y) Slice Centroid (m Y)

Southern Area

Central Area

Northern Area

Leapfrog Interpreted Volumes – Green Sectional Interpreted Volumes – Black Sampled thickness - Red Copyright Cube Consulting Pty Ltd

Volume Analysis: Conclusions

- Both interpretation methods can reproduce the global statistics within acceptable limits if constructed with due care
- The confidence in the interpreted volume increases as the sampling increases as expected
- Poorly informed areas
 - Sectional volume is dependent of the pessimistic or optimistic nature of the person conducting the interpretation
 - Leapfrog volumes are influenced of outliers (positive and negative) which may increase or decrease the interpreted volumes
 - Easily overcome by introducing control points

Volume Analysis: What Next?

- Analysis can be extended by:
 - Assessing the variance of the estimation error (i.e. nearest neighbour analysis)
 - Validation against Ordinary Kriged estimate of the thickness variable
 - Risk analysis can be extended through use of conditional simulations
- Interpreted volumes should be critically reviewed to increase confidence in our modelling process
- Areas of higher risk should be reflected in the classification of the MRE

